

Board of Engineers Malaysia www.bem.org.my





**New Program Evaluator Training – Outcome Based Accreditation** 9<sup>th</sup> **Oct 2019, New Council Hall, 1<sup>st</sup> Floor, IEB HQ, Ramna, Dhaka, Bangladesh** 09.30 – 10.45 (1 hr 15mn) 11.00 – 13.00 (2hr) 14.00 – 15.30 (1hr 30mn) 15.45 – 17.00 (1 hr 15mn)



**EAC Chair** 

#### Megat Johari Megat Mohd Noor

BEM Board Member & P.Eng.

**MySET President & Fellow** 

**MJIIT Professor (Retired)** 



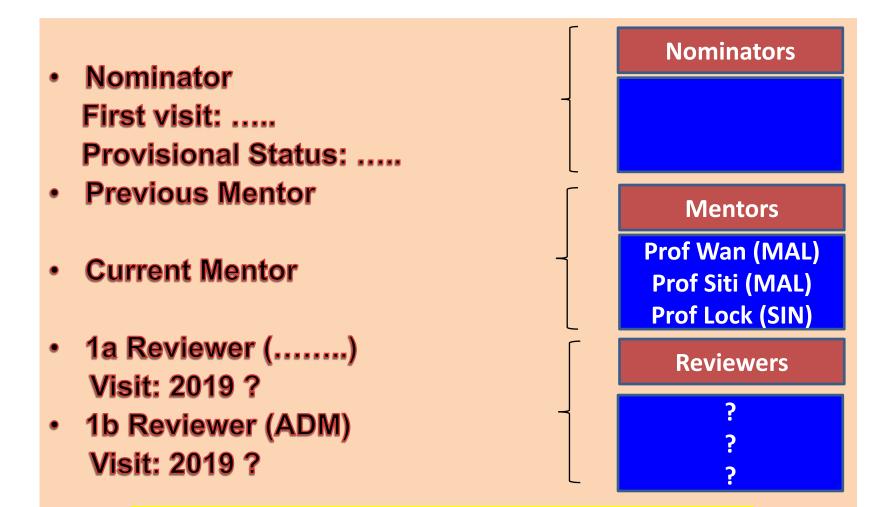




#### Megat Johari MEGAT MOHD NOOR

Board Member, BEM Chair, Engineering Accreditation Council (EAC), BEM Council Member, Engineering Technology Accreditation Council (ETAC), BEM Professional Engineer with Practicing Certificate, BEM Founding Director, Engineering Accreditation Department, BEM Associate Director (International), Engineering Accreditation Department (EAD), BEM President & Fellow, Malaysian Society for Engineering & Technology (MySET) Vice President, Federation of Engineering Institutions of Islamic Countries (FEIIC) Former Vice-President & Fellow, Institution of Engineers Malaysia (IEM) Former Director, Centre for Quality & Risk Management (QRiM), UTM Former Professor & Founding Dean, Malaysia Japan International Institute of Technology (MJIIT), UTM Former Head, Department of Civil Engineering, UPM Former Head, Quality Unit, Faculty of Engineering, UPM Member, Malaysia Research University Committee, MOHE




#### 9 October 2019







#### Bangladesh Washington Accord Route (till 2020?)



Full Signatory in Jun 2020 at IEAM Cape Town, South Africa ?

## Outlines

- Introduction
- OBE
- Evaluation
- Decorum
- Decision & Reporting





- Paradigm Shift Outcome & Quality
- Maintain Fundamentals while Encourage Inclusion of Latest Technology Advancement in the Curriculum
- Allow Academic Innovation and Creativity
- Avoid Side-tracked
- Variety of Modes

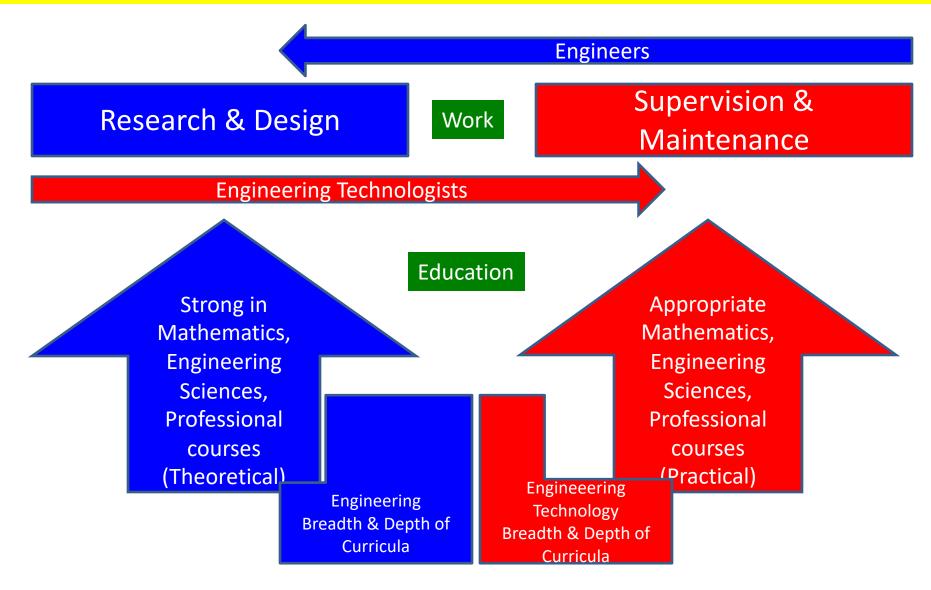




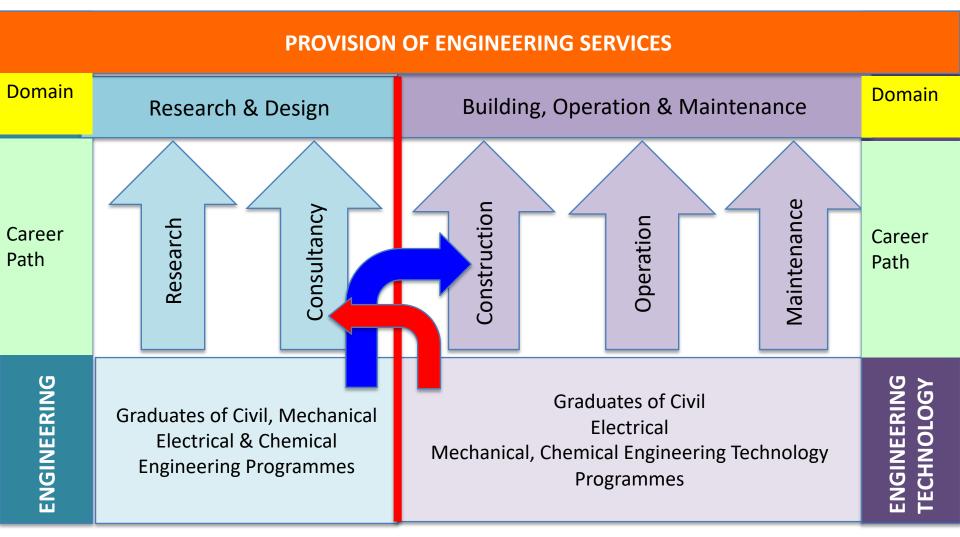




#### Issues


- Attainment
- Culminating
- Selective
- Comprehensive
- Complex problem
- Wide spread
- Limited
- Constructive alignment
- Adding up/Binary/Average/Minimum/Maximum
- Low Taxonomy
- Systems approach
- Software support



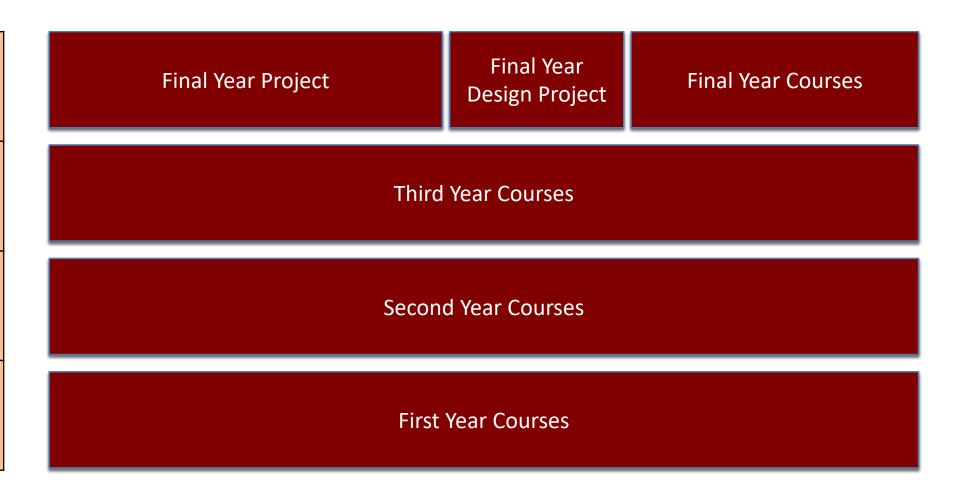





### Engineering & Engineering Technology Domains

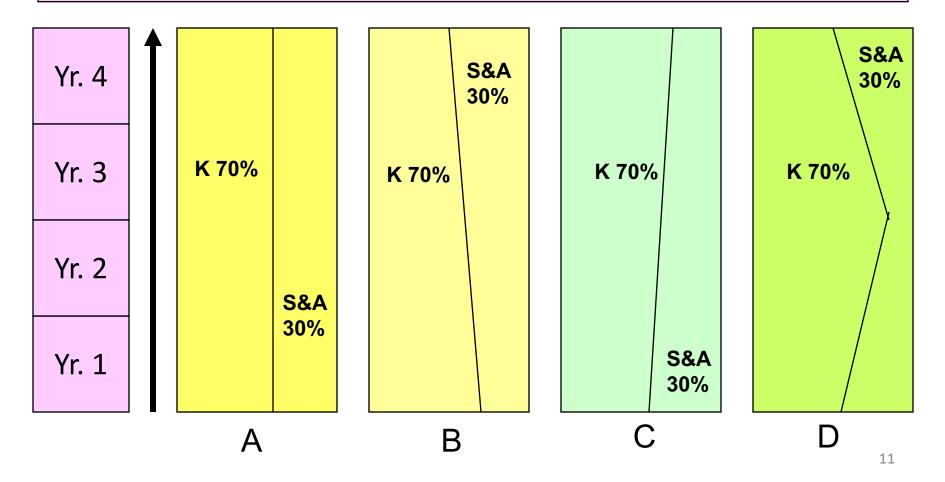


## **Career Paths**




#### PEO

#### WHAT YOU WANT YOUR GRADUATES TO BE IN 3 - 5 YEARS

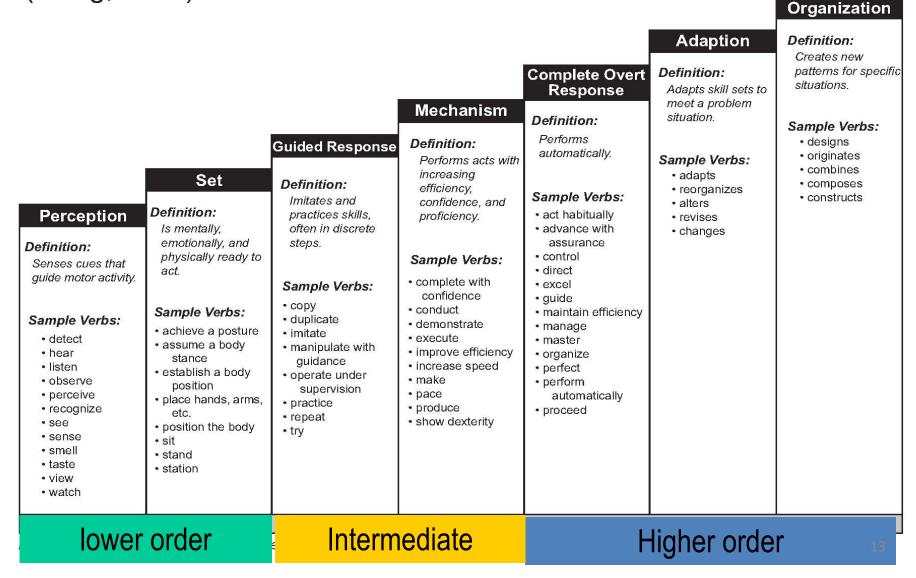

| EXTRA-CURRICULAR | <section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header> | WA3<br>DESIGN                                  | WA9<br>IND & TEAM              | UNIVERSITY EXPERIENCE |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|-----------------------|
|                  |                                                                                                                                                                       | WA5<br>MODERN TOOLS                            | WA10<br>COMMUNICAT-<br>ION     |                       |
|                  |                                                                                                                                                                       | WA6 ENGR & SOC<br>WA7 ENV & SUST<br>WA8 ETHICS | WA11<br>PROJ MGMT &<br>FINANCE |                       |
|                  |                                                                                                                                                                       | WA4<br>INVESTIGATION                           | WA12<br>LIFE LONG              | 9                     |

## PO Attainment



## **Curricula Models**

Distribution of Knowledge, Skills & Attitude elements throughout the 4 years




#### New Bloom's Taxonomy

| Remembering: can the<br>student recall or remember<br>the information?    | define, duplicate, list, memorize, recall, repeat, reproduce<br>state                                                        |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Understanding: can the<br>student explain ideas or<br>concepts?           | classify, describe, discuss, explain, identify, locate, recognize, report, select, translate, paraphrase                     |
| Applying: can the student use the information in a new way?               | choose, demonstrate, dramatize, employ, illustrate,<br>interpret, operate, schedule, sketch, solve, use, write.              |
| Analyzing: can the student<br>distinguish between the<br>different parts? | appraise, compare, contrast, criticize, differentiate,<br>discriminate, distinguish, examine, experiment, question,<br>test. |
| Evaluating: can the student justify a stand or decision?                  | appraise, argue, defend, judge, select, support, value,<br>evaluate                                                          |
| Creating: can the student<br>create new product or point<br>of view?      | assemble, construct, create, design, develop, formulate, write.                                                              |

#### **Psychomotor Domain**

(doing, skills)



## **Affective Domain**

(feeling, attitudes)

#### Receiving

#### Definition

Selectively attends to stimuli

#### Sample Verbs:

- accept
- acknowledge
- · be aware
- listen
- notice
- pay attention
- tolerate

#### Valuing

#### Definition:

Attaches value or worth to something.

#### Sample Verbs:

- adopt
- · assume responsibility
- behave according to
- · choose
- commit
- desire
- exhibit loyalty
- express
- initiate
- prefer
- show concern
- show continual desire to
- use resources to

#### Organization

#### Definition:

Conceptualizes the value and resolves conflict between it and other values

#### Sample Verbs:

- adapt
- adjust
- arrange
- balance
- classify
- conceptualize
- formulate
- group
- organize
- rank
- theorize

#### Internalizing

#### Definition:

Integrates the value into a value system that controls behavior.

#### Sample Verbs:

- act upon
- advocate
- defend
- exemplify
- influence
- justify behavior
- maintain
- serve
- support

#### Intermediate

Higher order

 seek participate willingly read voluntarily

Responding

Responds to stimuli.

Sample Verbs:

answer freely

communicate

agree to

assist

care for

comply

conform

consent

follow

 respond visit volunteer

· obev

lower order

contribute

cooperate

Definition:

#### Course Outcome (CO) contributing to Programme Outcome (PO)

## Ability to function in a multidisciplinary team

- Assign <u>multidisciplinary design</u> projects in engineering courses.
- Implement design projects with <u>multidisciplinary</u> <u>teams</u>

Exercise: Identify a course and discuss how it can be implemented





15

## Course Outcome (CO) contributing to Programme Outcome (PO)

Broad education necessary to understand the impact of engineering solutions in a global, environment and societal context + knowledge of contemporary issues

- Include structured <u>controversies</u> in engineering course
- Conduct class exercise or homework problems that involve global/societal issues

Exercise: Identify a course and discuss how it can be implemented





#### **Course Outcome (CO) contributing to Programme Outcome (PO)**

#### Life Long Learning

- Teach students about <u>learning styles</u> and help them identify the strength and weakness of their styles and give them strategies to improve
- Use <u>active learning</u> methods to accustom them to relying on themselves
- Give assignments that requires **library and www searches**
- Anything done to fulfil criteria on: (a) understanding ethical and professional responsibility and (b) understanding societal and global context of engineering solutions, will <u>automatically satisfy this criteria</u>



#### Learning outcomes by adding a condition and standard

#### <u>Poor</u>

• Students should be able to design research.

#### <u>Better</u>

 Students should be able to independently design and carry out experimental and correlational research.

#### <u>Best</u>

• Students should be able to independently design and carry out experimental and correlational research that yields valid results.

Source: Bergen, R. 2000. A Program Guideline for Outcomes Assessment at Geneva College

#### WK1 natural sciences

## Knowledge Profile

WK5 engineering design

**WK6** 

engineering

practice

WK2 mathematics, numerical analysis, statistics, computer and information science

WK3 engineering fundamentals

WK4 engineering specialist knowledge 4 YEARS

WK7 engineering in society

> WK8 research literature







#### **Engineering Knowledge**

(WA1) Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialisation to the solution of <u>complex</u> engineering problems; (WK1 to WK4)

#### WA = Programme Learning Outcome WK = Knowledge Profile = Curriculum





#### **Problem Analysis - Complexity of analysis**

(WA2) Identify, formulate, research literature and analyse <u>complex</u> engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (WK1 – WK4)



- Design/Development of Solutions Breadth and uniqueness of engineering problems i.e. the extent to which problems are original and to which solutions have previously been identified or codified
- (WA3) Design solutions for <u>complex</u> engineering problems and design systems, components or processes that <u>meet specified needs</u> with appropriate consideration for <u>public health and safety</u>, <u>cultural</u>, <u>societal</u>, <u>and environmental considerations</u> (WK5)







Investigation - Breadth & Depth of Investigation & Experimentation

(WA4) Conduct investigation of <u>complex</u> problems using research based knowledge (WK8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions





Modern Tool Usage - Level of understanding of the appropriateness of the tool

(WA5) Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to <u>complex</u> engineering problems, with an understanding of the limitations. (WK6)







## The Engineer and Society - Level of knowledge and responsibility

(WA6) Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (WK7)







#### **Environment and Sustainability - Type of solutions**

(WA7) Understand and evaluate the sustainability and impact of professional engineering work in the solutions of <u>complex</u> engineering problems in societal and environmental contexts (demonstrate knowledge of and need for sustainable development) (WK7)







#### **Ethics - Understanding and level of practice**

# (WA8) Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (WK7)







## Individual and Team Work – Role in and diversity of team

(WA9) Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings







Communication – Level of communication according to type of activities performed

(WA10) Communicate effectively on <u>complex</u> engineering activities with the engineering community and with society at large, such as being able to <u>comprehend and write</u> effective reports and design documentation, make <u>effective</u> <u>presentations</u>, and give and receive <u>clear</u> <u>instructions</u>







Project Management and Finance – Level of management required for differing types of activity

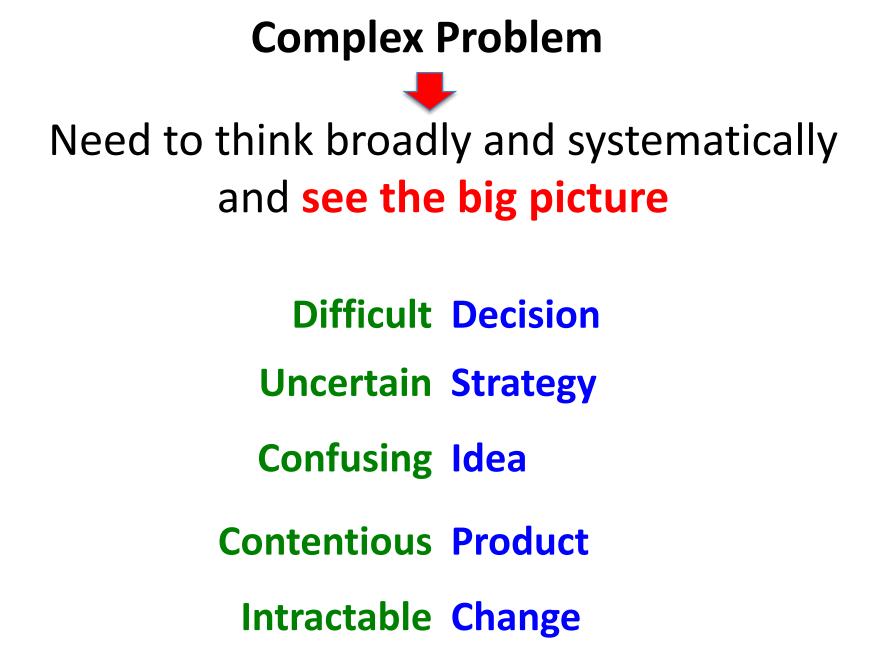
(WA11) Demonstrate knowledge and understanding of engineering and management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments







## Life-long Learning – Preparation for and depth of continuing learning


(WA12) Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

#### Washington Accord Graduate Attributes PROGRAMME OUTCOMES

| WA1                        | Engineering Knowledge                                                                                      | Breadth & depth of knowledge                                                                                                                                                                                                                                 |
|----------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WA2                        | Problem Analysis                                                                                           | Complexity of analysis                                                                                                                                                                                                                                       |
| WA3                        | Design/Development of<br>Solutions                                                                         | Breadth & uniqueness of engineering problems i.e. the extent to which problems are original and to which solutions have previously been identified and coded                                                                                                 |
| WA4                        | Investigation                                                                                              | Breadth & depth of investigation and experimentation                                                                                                                                                                                                         |
| WA5                        | Modern Tool Usage                                                                                          | Level of understanding of the appropriateness of the tool                                                                                                                                                                                                    |
| WA6                        | The Engineer and Society                                                                                   | Level of knowledge and responsibility                                                                                                                                                                                                                        |
| WA7                        | Environment and<br>Sustainability                                                                          | Type of solutions                                                                                                                                                                                                                                            |
| WA8                        | Ethics                                                                                                     | Understanding and level of practice                                                                                                                                                                                                                          |
| WA9                        | Individual and Team Work                                                                                   | Role in and diversity of team                                                                                                                                                                                                                                |
| WA10                       | Communication                                                                                              | Level of communication according to type of activities performed                                                                                                                                                                                             |
| WA11                       | Project Management and<br>Finance                                                                          | Level of management required for differing types of activity                                                                                                                                                                                                 |
| WA12                       | Life-long Learning                                                                                         | Preparation for and depth of continuing learning 32                                                                                                                                                                                                          |
| WA8<br>WA9<br>WA10<br>WA11 | Sustainability<br>Ethics<br>Individual and Team Work<br>Communication<br>Project Management and<br>Finance | Understanding and level of practice<br>Role in and diversity of team<br>Level of communication according to type of activities performed<br>Level of management required for differing types of activity<br>Preparation for and depth of continuing learning |

|                                 | natura                                   | WA9<br>IND & TEAM              | ;<br>ring<br>n    | WA3<br>DESIGN                                  |
|---------------------------------|------------------------------------------|--------------------------------|-------------------|------------------------------------------------|
| WA1<br>ENGINEERING<br>KNOWLEDGE | math<br>nui<br>an<br>sta<br>comp<br>info | WA10<br>COMMUNICAT-<br>ION     | ;<br>ring<br>ce   | WA5<br>MODERN TOOLS                            |
| WA2<br>PROBLEM<br>ANALYSIS      | sc<br>engi<br>funda                      | WA11<br>PROJ MGMT &<br>FINANCE | ,<br>ing in<br>:y | WA6 ENGR & SOC<br>WA7 ENV & SUST<br>WA8 ETHICS |
|                                 | engi<br>spo<br>kno                       | LIFE LONG                      | }<br>ch<br>ıre    | WA4<br>INVESTIGATION                           |

|                                 | WA9<br>IND & TEAM           | WA3<br>DESIGN                                  |
|---------------------------------|-----------------------------|------------------------------------------------|
| WA1<br>ENGINEERING<br>KNOWLEDGE | WA10<br>COMMUNICAT-ION      | WA5<br>MODERN TOOLS                            |
| WA2<br>PROBLEM<br>ANALYSIS      | WA11<br>PROJ MGMT & FINANCE | WA6 ENGR & SOC<br>WA7 ENV & SUST<br>WA8 ETHICS |
|                                 | WA12<br>LIFE LONG           | WA4<br>INVESTIGATION                           |



#### Complex Problems (*Need High Taxonomy Level*)

Complex Engineering Problems have characteristic WP1 and some or all of WP2 to WP7, EP1 and EP2, that can be resolved with in-depth forefront knowledge

| WP1 | Depth of Knowledge<br>required                                                | Resolved with <b>forefront in-depth</b> engineering<br>knowledge (WK3, WK4, WK5, WK6 or WK8) which<br>allows a fundamentals-based, first principles analytical<br>approach |
|-----|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WP2 | Range of conflicting requirements                                             | Involve wide-ranging or conflicting technical,<br>engineering and other issues.                                                                                            |
| WP3 | Depth of analysis required                                                    | Have <b>no obvious solution</b> and require abstract thinking, originality in analysis to formulate suitable models.                                                       |
| WP4 | Familiarity of issues                                                         | Involve infrequently encountered issues                                                                                                                                    |
| WP5 | Extent of applicable codes                                                    | Beyond codes of practice                                                                                                                                                   |
| WP6 | Extent of stakeholder<br>involvement and level of<br>conflicting requirements | Involve <b>diverse groups of stakeholders</b> with widely <b>varying needs</b> .                                                                                           |
| WP7 | Interdependence                                                               | Are <b>high level problems</b> including <b>many component</b> parts or sub-problems.                                                                                      |
| EP1 | Consequences                                                                  | Have significant consequences in a range of contexts.                                                                                                                      |
| EP2 | Judgement                                                                     | Require judgement in <b>decision</b> making                                                                                                                                |

### Complex Engineering Activities (Project based)

| Preamble                                    | <b>Complex activities</b> means (engineering) activities or<br>projects that have <b>some or all</b> of the following<br>characteristics listed below          |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range of resources                          | <b>Diverse resources</b> (people, money, equipment, materials, information and technologies).                                                                  |
| Level of interaction                        | Require resolution of significant problems arising from interactions between <b>wide ranging</b> or <b>conflicting</b> technical, engineering or other issues. |
| Innovation                                  | Involve creative use of engineering principles and research-based knowledge in novel ways                                                                      |
| Consequences to society and the environment | Have <b>significant consequences</b> in a <b>range of</b><br><b>contexts</b> , characterised by <b>difficulty</b> of prediction<br>and mitigation.             |
| Familiarity                                 | Can extend <b>beyond previous</b> experiences by applying <b>principles-based</b> approaches.                                                                  |

# WA – WK – WP Relationships

#### WA1 – Engineering Knowledge

(Science, Mathematics & Engineering) (WK1, WK2, WK3, WK4)

to solve Complex Engineering Problems

### WP1 – Depth of Knowledge

required:

Resolved with **forefront in-depth** engineering knowledge (WK3, WK4, WK5, WK6 or WK8) which allows a fundamentals-based, first principles analytical approach WK1 - natural sciences (WA1) (k

(know what)

WK2 - mathematics, numerical analysis, statistics, computer and information science(WA1)

WK3 - engineering fundamentals (WA1)

WK4 - engineering specialist knowledge (WA1)

WK5 - engineering design (know how) WA3 - Design

WK6 - engineering practice (know how) WA5 - Modern Tools

WK8 - research literature (know why)

WA4 - Investigation

| to solve                                                                                                  |                            |                                                 |                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------|------------------------------------------------------|--|--|
| <b>Complex Engineering Problems</b>                                                                       |                            | WK1 - natural sciences (WA1)                    |                                                      |  |  |
|                                                                                                           |                            |                                                 | numerical analysis,<br>and information science (WA1) |  |  |
| WP1 – Depth of Knowledge                                                                                  |                            | WK3 - er                                        | ngineering fundamentals (WA1)                        |  |  |
| <b>required:</b><br>Resolved with <b>forefront in-depth</b><br>engineering knowledge                      |                            | WK4 - engineering specialist knowledge<br>(WA1) |                                                      |  |  |
| (WK3, WK4, WK5, WK6 or WK8)<br>which allows a fundamentals-based,<br>first principles analytical approach |                            |                                                 | WK5 - engineering design<br>WA3 - Design             |  |  |
| WP2 Range of conflicting requirements                                                                     |                            |                                                 | WK6 - engineering practice<br>WA5 - Modern Tools     |  |  |
| WP3Depth of analysis requiredWP4Familiarity of issues                                                     | · · · ·                    |                                                 | WK8 - research literature                            |  |  |
| WP5 Extent of applicable codes                                                                            | Extent of applicable codes |                                                 | WA4 - Investigation                                  |  |  |
| WP6 Extent of stakeholder involvement a of conflicting requirements                                       | nd level                   |                                                 | Some or all                                          |  |  |
| WP7 Interdependence                                                                                       | Interdependence            |                                                 | WP2 – WP7, EP1 & EP2                                 |  |  |
| EP1 Consequences                                                                                          | Consequences               |                                                 |                                                      |  |  |
| EP2 Judgement                                                                                             |                            |                                                 |                                                      |  |  |

| to solve<br>Complex Engineering Problems                                                                  |                                                                           |                                                      | WK1 - natural sciences (WA1)                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
|                                                                                                           | -                                                                         | numerical analysis,<br>and information science (WA1) |                                                                                |  |  |
| WP1 – Depth of Knowledge                                                                                  |                                                                           | WK3 - er                                             | ngineering fundamentals (WA1)                                                  |  |  |
| required:<br>Resolved with forefront in-depth<br>engineering knowledge                                    |                                                                           | WK4 - engineering specialist knowledge<br>(WA1)      |                                                                                |  |  |
| (WK3, WK4, WK5, WK6 or WK8)<br>which allows a fundamentals-based,<br>first principles analytical approach |                                                                           |                                                      | WK5 - engineering design<br>WA3 - Design                                       |  |  |
| WP2 Range of conflicting requirements                                                                     |                                                                           |                                                      | WK6 - engineering practice<br>WA5 - Modern Tools                               |  |  |
| WP3Depth of analysis requiredWP4Familiarity of issues                                                     | Depth of analysis requiredFamiliarity of issuesExtent of applicable codes |                                                      | WK8 - research literature                                                      |  |  |
|                                                                                                           |                                                                           |                                                      | WA4 - Investigation                                                            |  |  |
| WP6 Extent of stakeholder involvement a of conflicting requirements                                       | of conflicting requirements       P7     Interdependence                  |                                                      | WK7 - engineering in society<br>WA6 - engineer & society                       |  |  |
| WP7 Interdependence                                                                                       |                                                                           |                                                      | WAB - engineer & society<br>WA7 - environment & sustainability<br>WA8 - ethics |  |  |
| EP1 Consequences                                                                                          |                                                                           |                                                      |                                                                                |  |  |
| EP2 Judgement                                                                                             | Judgement                                                                 |                                                      | Breadth                                                                        |  |  |

WK1 - natural sciences (WA1)

#### **Design Course**

WK2 - mathematics, numerical analysis, statistics, computer and information science (WA1)

#### WP1 – Depth of Knowledge

#### required:

Resolved with **forefront in-depth** engineering knowledge (WK3, WK4, WK5, WK6 or WK8) which allows a fundamentals-based, first principles analytical approach

| WP2  | Range of conflicting requirements                                                                    |
|------|------------------------------------------------------------------------------------------------------|
| VVFZ | Nange of conflicting requirements                                                                    |
| WP3  | Depth of analysis required (WA2)                                                                     |
| WP4  | Familiarity of issues                                                                                |
| WP5  | Extent of applicable codes                                                                           |
| WP6  | Extent of stakeholder involvement<br>and level of conflicting<br>requirements WK7 (WA6, WA7,<br>WA8) |
| WP7  | Interdependence                                                                                      |
| EP1  | Consequences                                                                                         |
| EP2  | Judgement                                                                                            |

WK3 - engineering fundamentals (WA1)

WK4 - engineering specialist knowledge (WA1)

WK5 - engineering design WA3 - Design

WK6 - engineering practice

WA5 - Modern Tools

WK8 - research literature WA4 - Investigation

WK7 - engineering in society

WA6 - engineer & society

WA7 - environment & sustainability

WA8 - ethics

WA2 - Problem Analysis
WA9 - Individual and Team Work
WA10 - Communication
WA11 - Project Management and Finance
WA12 - Life-long Learning

### Rubric

#### Adopted from G.Rogers

|              | 4 – Exceeds<br>Criteria                                                                                     | 3 – Meets Criteria                                                                                 | 2 - Progressing<br>to Criteria                                                                            | 1 - Below<br>Expectations                                                             |
|--------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Content      | Provides ample<br>supporting detail<br>to support solution/<br>argument                                     | Provides adequate<br>supporting detail<br>to support solution/<br>argument.                        | Some details but<br>may include<br>extraneous<br>or loosely<br>related material.                          | Inconsistent or few<br>details that may<br>interfere with the<br>meaning of the text. |
| Organization | Organizational<br>pattern is logical &<br>conveys<br>completeness<br>& wholeness.                           | Organizational<br>pattern is logical &<br>conveys completeness<br>& wholeness<br>with few lapses.  | Little completeness<br>& wholeness,<br>though organization<br>attempted.                                  | Little evidence of<br>organization or any<br>sense of wholeness<br>& completeness.    |
| Style        | Uses effective<br>language; makes<br>engaging,<br>appropriate word<br>choices for<br>audience<br>& purpose. | Uses effective<br>language &<br>appropriate<br>word choices<br>for intended audience<br>& purpose. | Limited &<br>predictable<br>vocabulary, perhaps<br>not appropriate for<br>intended audience<br>& purpose. | Limited or<br>inappropriate<br>vocabulary for the<br>intended audience<br>& purpose.  |
|              | Consistently<br>follows<br>the rules of<br>standard English                                                 | Generally follows<br>the rules for standard<br>English.                                            | Generally does not<br>follow the rules of<br>standard English.                                            | Does not follow the rules of standard English. 42                                     |

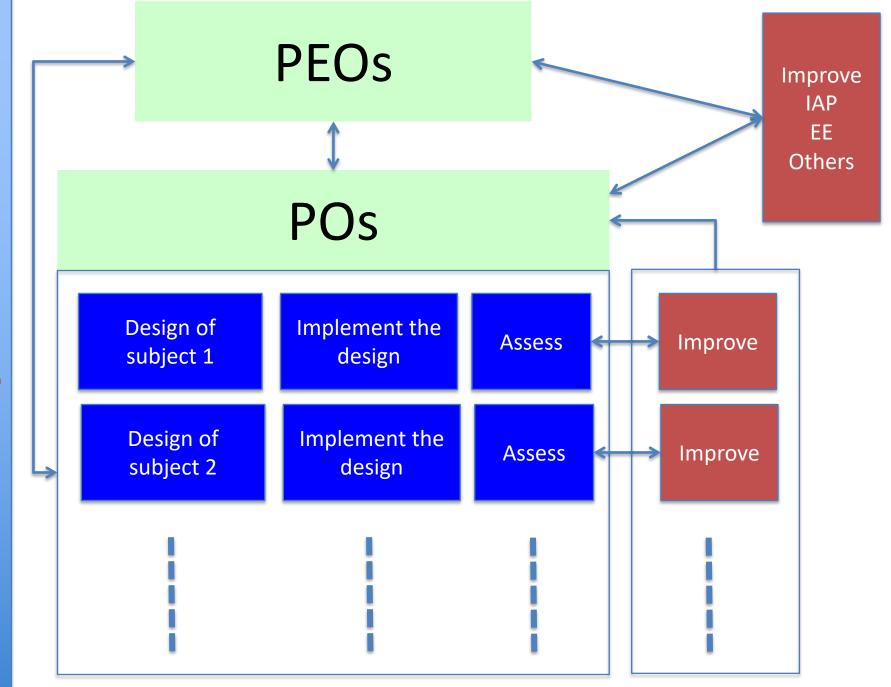
#### Board of Accreditaion for Engineering & Technical Education (BAETE) Manual (2<sup>nd</sup> Edition 2019) Effective 1<sup>st</sup> Jan 2020 Accreditation Criteria

- 4.1 Organization and Governance
- 4.2 Financial and Physical Resources
- 4.3 Faculty
- 4.4 Students
- 4.5 Academic Facilities and Technical Support
- 4.6 Curriculum and Teaching-Learning Processes
- 4.7 Program Educational Objectives (PEO)
- 4.8 Program Outcomes and Assessment
- 4.9 Continuous Quality Improvement (CQI)
- 4.10 Interactions with the Industry.....

### Lessons Learnt

- Many models
- Extent of adherence
- Minimum mastery
- Ability to solve complex problem
- Back to the Manual
- Use right terminology
- Appropriate measurement




**Directed & Coherent Curriculum Graduate Relevant to Industry** 

Programme Educational Objective (after 3-5 Years)

Programme Learning Outcome (at Exit)

Course/Unit/Learning Outcome (Abilities & Intentional)





Internally Driven CQI

# Let's work it out

- Provide your comments on the statements in the slides allocated to the four groups. What are the probing required and your final judgment on the issue?
- How would you improve the situations?
- How would you write your judgment?



- Uni Q decided to measure attainment of POs in the last two years of the program.
- Uni Y prefers in selecting a number of subjects within the program to show attainment of POs
- Uni Z chose to include only subjects own by the department conducting the program in showing attainment of POs
- Uni X has very few subjects allocated for nontechnical POs

- Uni A demonstrated strong attainment of technical POs but allowed students to fail only one of the non-technical POs
- Uni B approaches to demonstrate complex problem only at FYP
- Uni C defines complex problem as having breadth and depth at subject level
- Uni D specifies complex problem shall include all the knowledge profile

- Two of 11 academics were not adhering to the designed OBE system. These two were teaching basic subjects; Statics and Mathematics
- Two thirds of the academics misaligned final examination questions from the CO-PO mapping
- Half of the academics set their assessment at higher taxonomy than the designed
- Rubrics were used as assessment tools in cognitive domain

- The benchmarks for the attainment of POs were set at 50% for 50% of the students
- Three of the 30 subjects were allowing students who failed in one or two of the non-technical PO components of the subjects to move up the year without repeating the exact components
- Academics were having different understanding as to the interpretation of taxonomy level and strictly adhering to their interpretation.
- Rubrics were not used in assessing teamwork

### **BAETE's Expectations on Evaluators**

- Commitment
- Not "Auditors"
- Reference Material: BAETE's Manual
- Pre-Visit Planning & Discussion
- Day -1 meeting (be seen doing it)
- Visit Day Aplomb & Decorum
- Reporting
- Response to factual inaccuracies



# **Pre-Accreditation Visit Meeting**

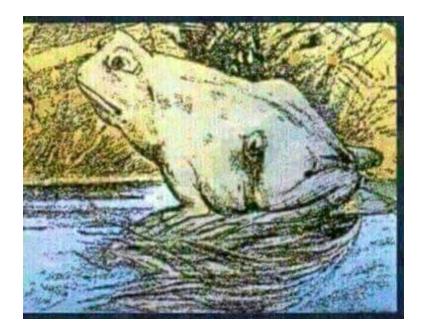
- Meet at least once (in addition to the meeting on Day -1) before the Accreditation Visit, to study and discuss documents, and systematically identify shortcomings.
- Strategically plan and/or request supplementary input from the University to fill the gaps. (Prepare interim report, checklist, schedule and assignment)
- Further information required, communicate through PEC.

# Day -1 Meeting

- Findings (interim report)
- Strategy (schedule & assignment)
- Update checklist



# **EVALUATION DAY**


- Opening meeting
- Meeting with
  - staff members,
  - students,
  - external stakeholders such as alumni, employers, and industry advisor
- Visiting facilities.
- Checking relevant documents.
- Exit meeting

### **OPENING MEETING**

- Introduce evaluation team members
- Mention the **objective** of the visit (programmes)
- Mention that it is not fault finding exercise but to identify the programme conformance to the Accreditation criteria
- Explain the **methods** of conducting the evaluation
- **Review** the plan and **schedule**
- Confirm the time of the closing meeting
- Invite the Programme owner to fill up the latest (within a specified timeframe) if any

### **TRIANGULATION ... example**

- Curriculum development (specification/input)
- Curriculum implementation (process)
- Demonstrated outcomes (output)



Its a horse?

### **Objective Evidence**

Evidence is the facts or information used to prove or disprove a proposition. It should be collected through:

- Interviewing
- Observation of environment
- Observation of implementation
- Checking of records or document

# **Objective Evidence**

- Evidence that exists
- Not influenced by emotion or prejudice
- Can be documented
- Is about quality
- Can be quantitative or qualitative
- Can be verified



## **Objective Evidence**

The facts or information used to conclude whether a programme has or has not undertaken appropriate activities effectively to demonstrate attainment of the necessary outcomes.



### **EVALUATOR'S APPROACH**

- Sensible questioning
- Check records
- Observing processes
- Analyse inputs and outputs
- Organised using tables, matrices, flowcharts and checklists

### Questioning

### 6 friends – What, When, Why, Who, Where, How

#### Best friend – Show Me

#### Additional skills of LISTENING and OBSERVING



# **EFFECTIVE COMMUNICATION**

Occurs when the right person, says the right things, to the right people, at the right place at the right time and in the right way to be heard and understood and to produce the right response.

Important

- Person is at ease in communicating with the Evaluator.
- Evaluator should do all he/she can to make person feel at ease.

# EFFECTIVE COMMUNICATION (Cont..)

#### Tips

- Gain attention from the person before starting.
- Explain clearly the purpose of the session/visit.
- Include friendly remarks or express your interest in what he/she is doing.
- Politeness all the way never antagonise or belittle the person.
- Establish eye contact all the times.
- Communicate in the language he/she is comfortable.
- Use of body language to promote the dialogue. (Spoken message is 7%, verbal and vocal 38% and 55% facial).
- Listen, listen, listen, an Evaluator need to train himself to be an active listener.

# POINTS TO CONSIDER IN DERIVING FINDINGS/CONCLUSION

- Establish requirement
- Probe process
- Whom do you speaks to?
- What to look for?
- Sampling
- How long to persist?
- Is there any shortcomings?
- Is it significant?
- Consult team members





### What are the six (6) typical starting words that Evaluators can begin with, when questioning?

**Evaluators' Best friend ?** 



### What are the three (3) methods/techniques employed by Evaluators when conducting an accreditation exercise?

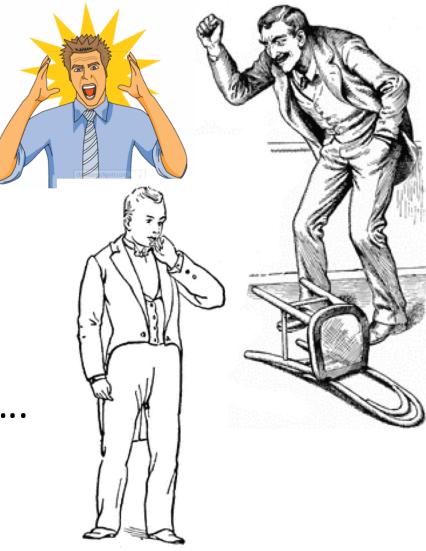


### **Opening Meeting - Evaluators**

- Greetings
- Purpose
- Introduce team
- State standard & method
- Confidentiality
- Highlight some issues of interest
- Prepare questions for top management

# **Exit Meeting - Evaluators**

- Greetings
- Thank IHL
- Relate strength
- Raise concerns
- Mention "detailed report & response to factual accuracies"
- Decision




# Dos & Don'ts Aplomb & Decorum

| Dos             | Don'ts                |
|-----------------|-----------------------|
| Formal attire   | Track suit            |
| Preparedness    | Based on presentation |
| Time management | Not punctual          |
| Well versed     | Lack of knowledge     |
| Probing         | Surface               |
| Big Picture     | Compartmentalized     |
| Triangulate     | Single evidence       |
| State the fact  | Giving solutions      |
| No surprises    | Shocking decision     |
| Collegial       | Too formal            |
| Serious         | Too lighthearted      |

# Don'ts

- Answering phone calls
- Silent
- Excused early
- Poor listener
- Opinionated
- Argumentative
- Please complete the list ....



# **COMPETENCY OF EVALUATORS**

- Organizing skills
- Knowledge of the manual
- Questioning skills
- Comprehensiveness of the evaluation
- Listening to persons
- Overall appearances
- Reporting
- Overall judgment
- Overall rapport with persons
- Aplomb (self-confidence) and decorum (etiquette)

# **Random Observations**

- Bullet points & Aggregation
- Ambiguous
- Poor time management
- Guidelines supersede Manual
- Keywords as sole determination
- Interrogative





### **Assessment for Decision**



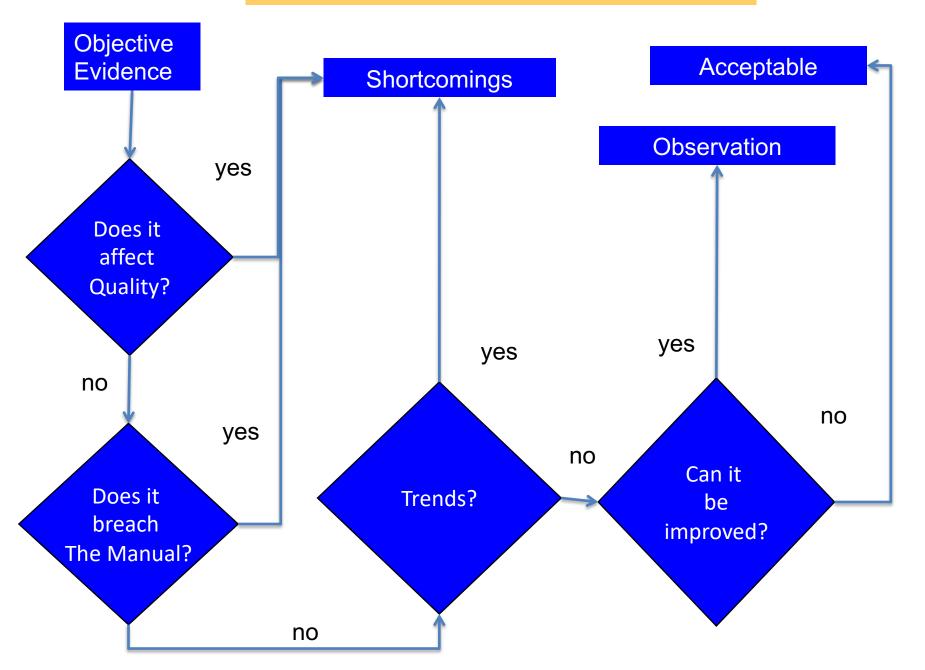


### Senario A

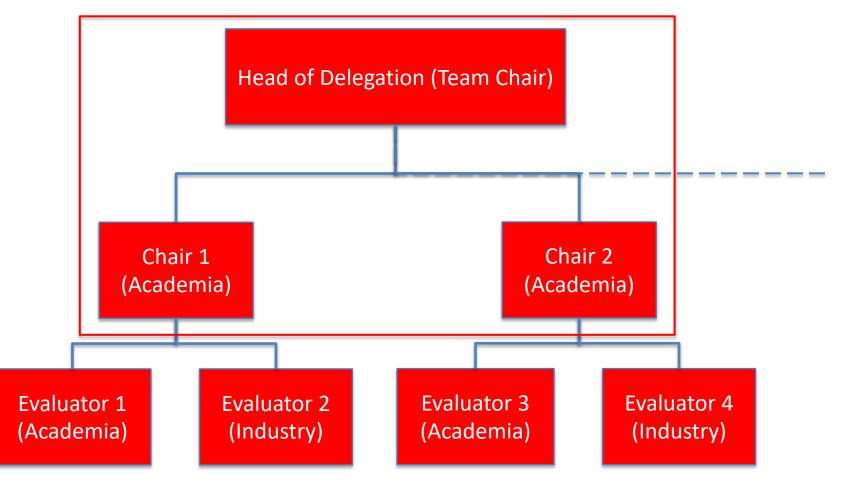
Ten of the 40 subjects were indicating cognitive taxonomy level of 3 over a scale of 6. The rest, including the third and final years' subjects were indicating level 4. The final year's final examination questions mostly reached up to level 6.

An External Examiner's report indicated dissatisfaction over what he termed as poor curriculum design with regards to the taxonomy level.

Laboratory works were mostly open ended. Final Year Projects (FYPs) were based on the research areas of the academic staff. Capstone design subject had industry involvement.

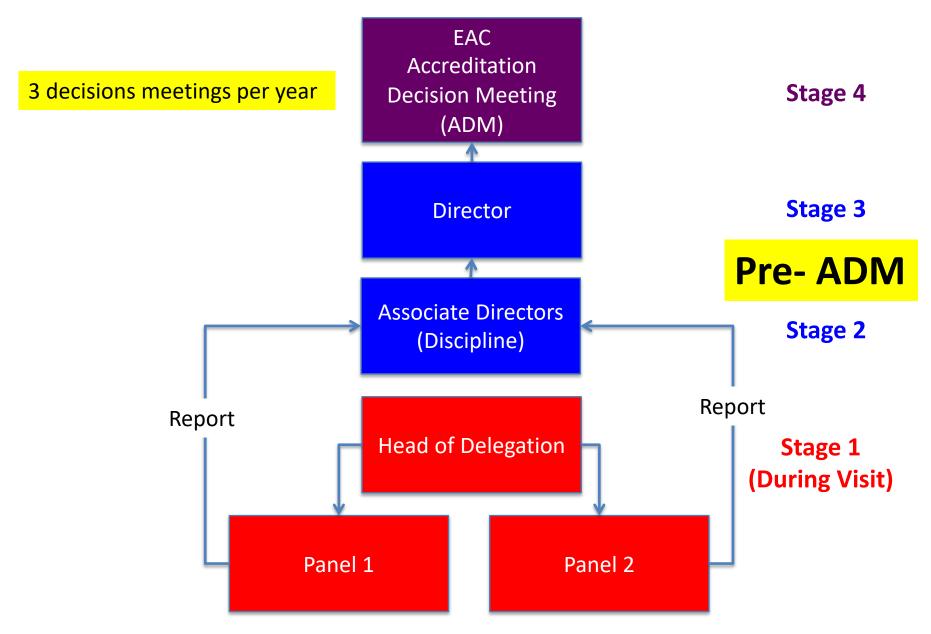

Majority of the students scored A in FYP and Capstone subject. Assessment Rubrics were widely used. Students were not satisfied with the Capstone subject on the allocated time and lacked of meeting space.

### Question


How would you pursue to arrive at a decision, and state the justification. Classify the decision according to the clauses of the manual, indicating; strength, weakness, concern (major or minor) or OFI.



#### **EVALUATION FLOW CHART**




## **Accreditation Visiting Team**



**PEC Secretariat** 

### **Consistency of Decision**



# Reporting

- Qualitative
- Strength
- Shortcomings (weaknesses)
- Concerns
- Opportunities for Improvement





# **Closing Remarks**

